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A B S T R A C T   

Renewable energy systems (RES) can impact landscape aesthetics and influence the public’s perception of the 
landscape and their acceptance of large infrastructure projects. Perceptual processes have consequences for both 
physiological and behavioral reactions to visual landscape changes and have not been systematically assessed in 
the context of RES. In this paper, we measured participants’ physiological (electrodermal activity) and behav-
ioral (i.e., landscape preferences) responses to landscapes with different amounts of RES. The visual stimuli were 
composed of either a low or high amount of wind turbines and photovoltaic systems in seven different landscape 
types. Participants were asked to choose their preferred landscape image from pairs of sequentially presented 
images while we recorded their electrodermal activity. The results revealed that participants were significantly 
more physiologically aroused while viewing landscapes with high RES compared to landscapes with low RES. We 
also found that the participants significantly preferred landscapes with low RES to landscapes with high RES and 
that this effect was larger for some landscapes than others. The results also revealed significant differences in 
preferences among landscape types. Specifically, participants tended to prefer the more natural landscapes to the 
more urban landscapes. A systematic analysis of the visual features of these stimuli revealed a positive corre-
lation between physiological arousal and the visual impact of photovoltaic systems. Overall, we conclude that 
both physiology and behavior can be relevant for studies of landscape perception and that these insights may 
inform planners and policy makers in the implementation of landscape changes related to RES.   

1. Introduction 

The Fukushima reactor accident (2011) highlighted the risks of nu-
clear power and prompted various countries to phase out nuclear energy 
production [1–3]. In order to close the energy gap resulting from the 
phasing out of nuclear energy and to achieve the CO2 emission targets, 
renewable energy systems (RES) are being increasingly promoted by 
nations around the world [4–6]. Since RES are distributed in space, their 
visual impact ([7] i.e., artificial form, color and textures) on landscapes 
can lead to conflicts with local citizens and other stakeholders [8,9]. In 
the future, such infrastructure is expected to fundamentally reshape the 
visual appearance of landscapes and, as a consequence, may affect 

people’s perception of these landscapes [10–13]. In general, the tran-
sition towards renewable energy production receives support on na-
tional scales but lacks acceptance at local levels [12,14,15]. Notably, the 
perceived landscape changes caused by wind and photovoltaic energy 
infrastructures are among the most decisive factors towards public 
acceptance of local projects [16–20]. In order to develop a strategy for 
promoting infrastructure developments, researchers should systemati-
cally assess the manner in which visual changes caused by the addition 
of RES in various landscapes affect behavior and physiology. 

In general, reasoning about visual stimuli can be influenced by 
cognitive and affective processes and result in both behavioral and 
physiological responses [15,21–24]. We follow the model that 
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landscapes can trigger physiological responses directly via 
sensory-perceptual reactions or indirectly through cognitive processes 
[25]. In this article, we define “affect” as a stimulus-specific reaction 
that is automatically and implicitly evoked through sensory processes 
[22]. In contrast, “emotion” is a broader term that can be defined as the 
result of the interaction between cognition and affect [26]. In order for 
individuals to accept landscape changes that may benefit society, their 
cognitive and affective processes need to be considered by planners and 
policy makers [22,26–28]. 

Visual changes caused by the addition of RES can be accompanied by 
a change in the emotions associated with a landscape and may involve a 
strong affective component [13,29]. Within an on-site study, Johanns-
son and Laike [12] found that a composite emotional state measure 
(including activation, orientation, evaluation, and control) predicted the 
intention to accept wind turbines by itself. However, a regression model 
with several additional factors (e.g., attitudinal and perceptual factors) 
explained significantly more variance. Similarly, Sánchez-Pantoja and 
colleagues [30] asked participants to estimate their emotional response 
to photographs including either building-integrated or conventional 
building-attached photovoltaic systems and demonstrated that the 
building-integrated photovoltaic systems were rated as more pleasant. 

Russel [31] proposed a two-dimensional model of affective reactions 
called the circumplex model. According to this model, affective states can 
be located along arousal and valence dimensions. With respect to 
landscapes, Ulrich’s psycho-evolutionary theory of affective responses 
to environments suggested that natural landscapes may cause a physi-
ologically measurable decrease in arousal [32–34]. Indeed, Chang et al. 
[35] tested the agreement between psychological (e.g., perceived 
restorativeness scale) and physiological (e.g., blood volume pulse) 
measures of responses to natural landscape stimuli. Their results 
revealed that stimuli with higher restorativeness ratings elicited lower 
arousal. 

Recently, Maehr and colleagues [36] measured participants’ physi-
ological arousal while they viewed landscape images with either wind 
turbines, other industrial constructions, or churches. Participants were 
also asked to rate the emotional impact of each landscape in terms of 
arousal and valence using the Self-Assessment Manikin (SAM [37]). 
Their results revealed that landscapes with wind turbines were more 
physiologically arousing than landscapes with churches, less arousing 
than landscapes with other industrial constructions in terms of 
self-report, and more pleasurable (i.e., higher valence) than landscapes 
with other industrial constructions [36]. This study indicates the po-
tential of physiological arousal measurements for assessing affective 
reactions to visual landscape changes but also suggests that, without 
correction for multiple comparisons, it is difficult to disentangle the 
effects of subtle landscape changes on different affective measures. 

As in Maehr and colleagues [36], many researchers have measured 
physiological arousal using skin conductance [38,39]. Skin conductance 
refers to changes to the electrical potential of the skin resulting from 
sympathetic activity of the autonomic nervous system (rather than 
thermal sweating) and is often measured at the medial phalanges of the 
fingers [40]. Skin conductance signals can be subdivided into a slowly 
and continuously changing tonic skin conductance level (SCL) and the 
phasic skin conductance response (SCR [38]). The number of SCRs 
(nSCR) indicates a fast changing, stimulus specific intensity of an 
emotion [41] and serves as a valid indicator for arousal [38,42]. In 
general, skin conductance is an index of implicit emotional responses 
that occur without conscious intentions [38,43] and thus may be used to 
distinguish between the affective and cognitive mechanisms underlying 
landscape perception. 

Previous studies have assessed the cognitive aspects of acceptance 
for wind turbines in terms of political attitudes (e.g. [44,45]), 
process-related effects (e.g. [46,47]), and perceived side effects (see 
[17]). Questionnaires are often used to collect emotion and preference 
data in a relatively short amount of time. However, the exclusive use of 
questionnaire data to examine landscape perception neglects the 

affective processes underlying landscape perception that may not be 
consciously accessible [48]. Indeed, survey responses about RES and 
landscape perception have been found to be susceptible to social influ-
ence [49]; knowledge and previous experience [50] and anticipation, 
concerns, or beliefs [49,51]. 

As an alternative to questionnaires, some researchers have presented 
participants with landscape images and asked them to rate particular 
images or compare multiple images in terms of the images’ visual 
characteristics [52]. Studies that focused on the visual impact of wind 
turbines generally agree that landscape type plays a significant role for 
preferences [52]. There is a controversial discussion as to whether wind 
turbines are preferred closer to Persson [53] or further from people’s 
residences [17,54]. Independent of landscape type, Devine-Wright [55] 
argues that both the specific landscape and the connotations associated 
with this landscape (e.g., leisure and tourism [56]) help determine 
people’s preferences. Interestingly, few works focus on preferences for 
photovoltaic systems in landscapes. In general, photovoltaic systems are 
perceived as positive (e.g. [15]). Indeed, combining photovoltaic sys-
tems with existing infrastructure in high alpine areas is well-accepted 
[57]. However, using a visual Q sorting method, Naspetti and col-
leagues [20] showed that small photovoltaic installations on roofs are 
more preferred than large ground-mounted systems in rural areas. 

Both preference and physiological responses may be connected to 
low- and high-level visual features of landscape images [58–60]. 
Low-level features (e.g., form, orientation, colors) are processed earlier 
along the visual pathway than high-level features [61] and have been 
related to various aspects of landscapes (e.g. [58,60,62–64]. Specif-
ically, color features such as hue and saturation have been found to 
predict landscape preferences and naturalness ratings, respectively [62]. 
In addition, spatial features have been found to trigger different physi-
ological responses. For example, Hägerhäll and et al. [58] found that a 
medium degree of fractality elicits activity in the frontal and parietal 
lobes, measured by electroencephalography. Similarly, the low spatial 
frequencies of scenes significantly influence eye-blinking rates, which 
may indicate lower cognitive load and less stress for natural scenes 
compared to urban environments [60]. 

In contrast, high-level visual features involve top-down processing 
[63,65] and are associated with expectations and current goals derived 
from the individual’s own experiences [66]. Similarly, Ibarra and col-
leagues [63] argue that landscape preferences strongly relate to visual 
design features that contain semantic information (e.g., shape of water 
body). In the present study, we define high-level visual features as the 
visual impact of RES. Visual impact represents the visual magnitude of 
specific landscape interventions [67]. Here, researchers have developed 
quantitative indicators such as the Objective Aesthetic Impact of Solar 
Power Plants (OAISPP [14];) and the Visual Impact of Wind Turbines 
(VIWT [68]) in order to assess the impact of high-level visual features 
associated with RES within landscapes. Previous research has also found 
that low- and high-level visual features of landscape images affect 
aesthetic preferences and may be extended to include physiological re-
sponses [62,63,69,70]. However, these studies have not yet systemati-
cally assessed the effect of different landscape types altered with RES on 
skin conductance. 

In the present study, we systematically manipulated images of Swiss 
landscapes to include low or high amounts of wind turbines and 
photovoltaic systems and measured participants’ physiological arousal 
as they performed pairwise comparisons among the images. We also 
attempted to correlate both physiological arousal and preferences with 
low- and high-level visual features. Based on previous research [36], we 
hypothesize that RES visual impact will be positively related to physi-
ological arousal. In addition, we expect this relationship to be explained 
by high- and low-level visual features of the stimuli [59–61]. Our second 
hypothesis is that RES visual impact will affect landscape preferences. 
With this work, we aim to understand the impact of RES on individuals’ 
landscape perception and, more broadly, the manner in which infra-
structure changes to landscapes may be preferred by people. 
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2. Materials and methods 

2.1. Participants 

A total of 101 participants (47 women, mean age = 23.5, SD = 4.4, 
age range = 19–47 years) were recruited using the University Regis-
tration Center for Study Participants (https://www.uast.uzh.ch). A large 
proportion of the recruited participants had a natural/environmental 
science (33%), engineering (18%), or life-science (11%) background. A 
minority of the sample actively supports a natural protective association 
(19%). However, the participants often vote environment-friendly 
parties (29%), moderate-liberal parties (19%), and/or left-oriented po-
litical parties (17%). Compared to the entire Swiss population, our 
sample represents a young, well-educated and environment-friendly 
group. Two participants were excluded because of software issues. All 
participants reported being native German speakers, physically and 
psychologically healthy, with normal or corrected-to-normal vision and 
hearing. The study was approved by the ethics committee of ETH Zurich 
(protocol number 2017-N-69). Participants were compensated 30 CHF 
for approximately 45 min of participation. 

In order to determine the appropriate number of participants, we 
conducted a power analysis for linear mixed models using the R package 
SIMR [71]. Because SIMR employs Monte Carlo simulations, this pack-
age can handle non-normal response variables and accommodate a wide 
range of model specifications. We determined that a sample of 92 par-
ticipants was sufficient to detect an η2 of approximately 0.022 (small to 
medium) assuming a power of .8, an alpha of .05, and 200 iterations for 
the Monte Carlo simulations. 

2.2. Audio-visual stimuli 

We generated the stimuli using 3D landscape simulations of RES 
scenarios, developed on the basis of a previous study of the Switzer-
land’s physical potential for renewable energy production [9]. We 
selected specific landscapes (i.e., vistas) that were representative of each 
of the seven main biogeographic regions of Switzerland [72]. These 
regions are visually distinguished by the extent of urbanization and the 
roughness of their topography. Specifically, these regions include the 
northern areas of flat plateaus that are primarily used for agricultural 
production (PLAT_AGRI) or settlements (PLAT_URB). We also consid-
ered two hilly and less densely populated, northern pre-alpine areas 
(PRE_ALPS) and the Jura (JURA). In addition, the Alps, with steep 
terrain, were divided into the large inner-alpine valleys, with a relatively 
high population density (ALP_URB), the alpine landscapes used for ski 
tourism (ALP_TOUR), and the near-natural alpine regions (ALP). Fig. 1 
provides an overview of the appearance and distribution of these seven 
landscape types. We reconstructed each vista as a 3D landscape visual-
ization from a pedestrian perspective using light detection and ranging 
(LiDAR) data. The LiDAR data was colored using photos taken with a 
Nikon D700 camera, mounted on top of the scanner (Riegl VZ-1000). 
Subsequently, we imported the colored point clouds into the 3D 
graphic processing software CINEMA 4D. In order to minimize the ef-
fects of different weather and lightning conditions on physiological 
arousal measurements, we kept several atmospheric parameters con-
stant for all seven landscape types. Specifically, we accounted for the 
type of sky and clouds, the light intensity of the sun, the color tone of the 
daylight, and the atmospheric refractions during the video rendering 
process. In each scene, we defined and rendered a 160⁰ panoramic field 
of view to generate the video with moving clouds for a more vivid 
impression. We also recorded ambient sound with a sound-field micro-
phone (four-channel, first order ambisonics) for each vista. During 
post-processing we excluded disturbing soundmarks and generated a 
congruent ambient sound for each landscape [73]. 

For each visualization, we created two simulations by adding two 
different visual impact scenarios of RES (i.e., LOW and HIGH) to only the 
middle 53.3⁰ (center screen) of the visualization (see Fig. 1). The 

ambient sounds were held constant for different levels of RES because 
the distances from the wind turbines to the observer were too large for 
the observer to perceive their sound. To create comparable simulations 
for the two RES scenarios of each landscape, we calculated two high- 
level visual features, specifically the OAISPP [18] and the VIWT [68]. 
The OAISPP combines four measures (i.e., visibility, color, fractality, 
and contrast) for the photovoltaic panels and ranges from 0 (no visual 
impact) to 1 (strong visual impact). We did not include a climatology 
coefficient as proposed by Torres-Sibille and colleagues [18] because 
atmospheric conditions were held constant across visualizations. The 
VIWT considers the number of wind turbines, partial visibility, and 
distance from the observer and ranges from 0 (i.e., no visual impact) to 
(theoretically) infinity. See Appendix A.1 and A.2 for the OAISPP and 
VIWT values of the final visualizations. 

These 3D visualizations were used to render 30-s panoramic videos 
with a resolution of 5760 pixels by 1080 pixels. The animations in these 
videos included rotating blades on the wind turbines and moving clouds 
in the sky. The final stimuli consisted of 14 videos (2 RES scenarios for 
each of the 7 landscapes, see supplementary data). For each of the final 
stimuli, we also calculated 10 low-level visual features (see Appendix B) 
that have all been used in the context of landscape perception in pre-
vious research [58,59,62,70]. Specifically, we computed feature 
congestion (FC), subband entropy (SUB_ENTR), JPEG compression size 
(JPEG), edge counts (EC), fractality (FRACT), low spatial frequencies 
(SF_LOW), high spatial frequencies (SF_HIGH), image hue (HUE_MEAN), 
hue variability (HUE_SD), and image saturation (SAT_MEAN). FC rep-
resents the visual overload of an image, based on the variation of con-
trasts, orientation and luminance [64]. SUB_ENTR refers to the 
organization, grouping, and degree of redundancy of objects within a 
scene, approximated with encoding efficiency [59,64,65]. Furthermore, 
JPEG has been proposed as a proxy for visual complexity and may in-
fluence affective responses [59]. EC and FRACT are indices of perceived 
naturalness [58,62,70,74]. FRACT is a similarity measurement of image 
patterns over different scales and has been found to trigger physiological 
responses [58]. Spatial frequencies refer to different numbers of 
repeating elements per unit of distance as determined by a Fourier 
transform. SF_LOW and SF_HIGH are relatively coarse- and fine-grained 
spatial frequencies, respectively, and have been related to cognitive and 
affective processes [60]. 

In order to assess participants’ emotional states, we employed the 
three dimensions (i.e., arousal, valence, and dominance) of the Self- 
Assessment Manikin (SAM) questionnaire [37]. Each dimension was 
represented by images along a 9-point scale. In addition, we used an 
online questionnaire to assess participants environmental perspective, 
energy-related attitudes and their concerns about trust and justice in the 
context of RES. Furthermore, we asked participants about their 
perception of their neighborhood and their concerns regarding RES. 
Finally, we collected participants socio-demographic characteristics. 

The experiment was conducted in the Mobile Visual Acoustic Labo-
ratory (MVAL; for a detailed description see Ref. [75]) in order to ensure 
constant light and sound conditions. The MVAL is an aluminum struc-
ture (5 m × 5 m x 2.5 m) with sound absorbing curtains and three large 
projection screens (Fig. 2). The stimuli were projected onto these screens 
using three HD projectors (EPSON EH-TW6700). The landscape sounds 
were replayed using a 5.0 surround sound system, mounted according to 
the ITU-R BS.775 standard. Participants sat 2.15 m in front of the center 
screen with their non-dominant hand resting on an armrest in order to 
reduce movement artifacts in the EDA data [76]. Participants used their 
dominant hand to control a computer mouse to indicate their prefer-
ences. Skin conductance electrodes (MTL118F) from ADInstruments 
(https://www.adinstruments.com) were attached to the middle pha-
langes of the index and ring fingers of the non-dominant hand without 
pretreatment of the skin. These electrodes were also attached to a FE116 
GSR Amp and a Powerlab 8/35 recording device from ADInstruments. 

Regarding software, we used Cinema4D (https://www.maxon.net), 
Adobe Premiere Pro (https://www.adobe.com), the digital audio 
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Fig. 1. Cartographic maps indicating the areas of the seven landscapes and the 3D landscape visualizations corresponding to the low and high RES scenarios. The 
base relief map of Switzerland was reproduced by permission of swisstopo (JA100120). 
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workstation REAPER (https://www.reaper.fm) and the Experiments in 
Virtual Environments framework (EVE [77]) for creating and presenting 
the stimuli. For collecting and analyzing the skin conductance data, we 
used LabChart 8.14 (https://www.adinstruments.com), Matlab R2016b 

/R2017a (https://www.mathworks.com), and Ledalab 3.4.9 (htt 
p://www.ledalab.com). All inferential statistics were conducted using 
Rstudio [90] (version 3.5.1). 

Fig. 2. Overview diagram of the experiment setup in the Mobile Visual-Acoustic Laboratory (MVAL).  

Fig. 3. Illustration of the study procedure with greyscale images representing different stimuli. Participants chose their preferred landscape image among two stimuli 
for each of three trials, separated by 20-s intervals. 
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2.3. Testing procedure 

Data was collected for each participant individually in a laboratory 
session (Fig. 3) that lasted approximately 45 min. After reading an in-
formation sheet and signing the consent form, participants sat in a chair 
at the center of the MVAL. The experimenter then attached and cali-
brated the EDA electrodes [78] and turned off the lights. Participants 
were instructed to remain still without crossing their feet throughout the 
experiment. Participants were then asked to complete the 
Self-Assessment Manikin (SAM) and read a short fairy tale (mean reading 
time = 223.13 s) that was presented on the center screen of the MVAL to 
obtain a baseline measure of EDA. During one practice trial, two 30-s 
training stimuli (videos of a moving blue circle and a moving red cube 
with individual ambient sound for each video) were presented to par-
ticipants sequentially, and they were asked to use the arrow keys on the 
keyboard to select their preferred stimulus. 

Participants then completed three similar testing trials with three 
pairs of the landscape videos showing RES scenarios. These testing trials 
were separated by 20-s intervals consisting of a black cross on a gray 
background. The stimuli were paired so that one trial consisted of two 
high-RES landscape videos, one trial consisted of a high-RES landscape 
video and a low-RES landscape video, and one trial consisted of two low- 
RES landscape videos. The order of these trial types and the landscapes 
that composed each trial type were randomized and counterbalanced 
across participants, except that the same landscape was never seen by a 
participant more than once. At the end of each trial, participants were 
asked “Which landscape do you like better?” After finishing the testing 
trials and removing the electrodes, participants completed the post- 
experiment questionnaires outside of the MVAL. Data from the post- 
experiment questionnaires were collected for comparison with a larger 
online study and will be reported elsewhere. 

2.4. Experimental design and analysis 

We first considered the distribution of ratings for the SAM di-
mensions (i.e., arousal, valence, and dominance) in order to ensure that 
the participants were not psychologically aroused at the beginning of the 
experiment. 

We had two independent variables, specific landscape types 
(LANDSCAPE; 7 levels) and RES visual impact scenarios (SCENARIO; 
high versus low). In order to avoid the direct comparison of high and low 
versions of the same landscape, we used a mixed, imbalanced study 
design. We also refrained from repeating the landscapes for any indi-
vidual participant in order to prevent habituation effects in the physi-
ological data. As a result, participants viewed six different landscapes 
that were divided into three pairs. The two main dependent variables for 
this study are ΔnSCR and landscape preferences. 

The skin conductance data was first exported from LabChart to 
Ledalab. In Ledalab, this data was then down sampled from 1000 Hz to 
10 Hz and visually inspected for artifacts. No artifacts were detected. 
Subsequently, we used Continuous Decomposition Analysis in order to 
extract nSCR from each participant’s skin conductance data within 
particular response windows [79]. These 33-s response windows were 
defined as the period between 1 s after stimulus onset and 4 s after 
stimulus offset in order to capture all of the activity related to the 
stimulus [79]. This algorithm was optimized twice in order to model the 
impulse response function, and the threshold for peak detection was set 
at 0.01 μS. Baseline nSCR was calculated as mean nSCR for all 30-s 
response windows for each participant while reading the short story. 
Baseline nSCR was then subtracted from nSCR for each video’s response 
window to provide a measure (ΔnSCR) of reactivity to the stimuli [80]. 

After correcting for baseline of nSCR, we checked the data for vio-
lations of the normality and homogeneity assumptions in order to use 
parametric linear mixed models. Normality is a common assumption for 
parametric statistical tests [81], and different methods can be used to 
evaluate normality. In our case, we visually inspected the density plot of 

ΔnSCR data and applied a Kolmogorov-Smirnov test. We checked for 
violations of the homogeneity of variance assumption with Levene’s 
tests. These tests revealed non-normality of the residuals, but ΔnSCR 
was homogeneous across experimental groups. Because of the large 
number of data points per experimental condition, our linear mixed 
models should be robust to non-normality [82]. One (of 594) data points 
was an extreme outlier beyond six standard deviations of the mean and 
was removed from the analyses. 

In order to test for the effects of LANDSCAPE and SCENARIO on 
ΔnSCR with a mixed imbalanced design, we used five nested linear 
mixed effects models (see Table 1) with the lme4 package [83]. In the 
three-fixed-factor model, both independent variables (LANDSCAPE and 
SCENARIO) and their possible interaction were represented by fixed 
effects. For testing whether the interaction between LANDSCAPE and 
SCENARIO was significant, we compared this three-fixed-factor model 
to a two-fixed-factor model with fixed effects for only LANDSCAPE and 
SCENARIO. For testing the fixed effect of only the variable LANDSCAPE, 
we compared a one-fixed-factor model to a null model without any fixed 
effects. Similarly, we compared a one-fixed-factor model for SCENARIO 
to the same null model. Other variations in the stimuli that were not 
represented by the fixed effects were included as random effects. The 
random effects structure for each model was exactly the same. Specif-
ically, we included random effects for stimulus order over the three trials 
(ORD_OVER), stimulus order within a trial pair (ORD_PAIR), and the 
participant (SUBJ_ID). 

Following Bolker [84], we used another set of five nested generalized 
linear mixed models (GLMM) in order to analyze the (binary) preference 
data (Table 1). The fixed factors LANDSCAPE and SCENARIO for the 
three-fixed-factor, two-fixed-factor, one-fixed-factor, and null models 
were exactly the same as the models for ΔnSCR. However, for the 
preference data, we only included random effects for stimulus order over 
the three trials (ORD_ALL) and participant number (SUBJ_ID). We did 
not include a random effect for stimulus order within a pair because 
otherwise, we would have violated the assumption of independence by 
including more than one data point per choice. Because we only used 
two random effects, we fit the GLMM with Laplace approximation [84]. 

Table 1 
Linear mixed effects models to test fixed effects on nSCR and landscape pref-
erence (CHOICE).   

Dependent 
variable 

Fixed factors Random factors 

Model 
three-fixed- 

factor 
model 

ΔnSCR LANDSCAPE +
SCENARIO+(LANDSCAPE 
* SCENARIO) 

ORD_PAIR +
ORD_ALL +
SUBJ_ID 

two-fixed- 
factor 
model 

ΔnSCR LANDSCAPE + SCENARIO ORD_PAIR +
ORD_ALL +
SUBJ_ID 

one-fixed- 
factor 

ΔnSCR SCENARIO ORD_PAIR +
ORD_ALL +
SUBJ_ID 

one-fixed- 
factor 

ΔnSCR LANDSCAPE ORD_PAIR +
ORD_ALL +
SUBJ_ID 

null model ΔnSCR – ORD_PAIR +
ORD_ALL +
SUBJ_ID 

three-fixed- 
factor 
model 

CHOICE LANDSCAPE +
SCENARIO+(LANDSCAPE 
* SCENARIO) 

ORD_ALL +
SUBJ_ID 

two-fixed- 
factor 
model 

CHOICE LANDSCAPE + SCENARIO ORD_ALL +
SUBJ_ID 

one-fixed- 
factor 

CHOICE SCENARIO ORD_ALL +
SUBJ_ID 

one-fixed- 
factor 

CHOICE LANDSCAPE ORD_ALL +
SUBJ_ID 

null model CHOICE  ORD_ALL +
SUBJ_ID  
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Likelihood ratio tests were used to estimate the random effects. In 
addition, the data were not overdispersed, so we estimated the fixed 
effects using Wald Z statistics. 

Finally, we applied Spearman rank correlations to assess the extent 
to which these two dependent variables (ΔnSCR and preferences) were 
correlated to the two high-level and 10 low-level visual features of the 
stimuli. Given that we correlated 12 visual features with each dependent 
variable, we used a Bonferroni correction (a = 0.004) to account for 
possible alpha inflation. 

3. Results 

As expected, arousal ratings tended towards the middle of the 9-point 
scale at the beginning of the experiment (see Table 2). However, both 
valence and dominance ratings tended to be slightly above the middle of 
the scale. 

For ΔnSCR, the comparison between the three-fixed-factor model 
and the two-fixed-factor model did not reveal a significant interaction 
between LANDSCAPE and SCENARIO (X 2(6) = 7.631, p = .266). The 
comparisons between one-fixed-factor models and null model did not 
reveal a significant effect of LANDSCAPE on ΔnSCR (X 2(6) = 5.674, p =
.461) but did reveal a significant effect of SCENARIO on ΔnSCR (X2(1) 
= 8.262, p = .004). This effect suggests that physiological arousal was 
higher during videos with more RES (see Fig. 4). 

For the preference data, the comparison between the three-fixed- 
factor model and the two-fixed-factor model revealed a significant 
interaction between LANDSCAPE and SCENARIO (X 2(6) = 16.469, p =
.011). In addition, the comparisons between the one-fixed-factor models 
and the null model revealed significant effects for LANDSCAPE (X 2(6) 
= 23.525, p < .001) and SCENARIO (X 2(1) = 6.181, p = .013) on 
participants’ preferences. Together, these effects suggest that partici-
pants preferred low RES (compared to high RES) and that this effect 
varied across landscapes. Notably, this trend is visible for each land-
scape except for PLAT_URB and PLAT_AGRI (Fig. 5). 

We also found significant correlations between ΔnSCR and VIWT (r 
(12) = 0.600, p = .024), between ΔnSCR and OAISPP (r(12) = 0.714, p 
= .004), and ΔnSCR and SUB_ENTR (r(12) = -.545, p = .044). However, 
only the correlation between ΔnSCR and OAISPP survived a Bonferroni 
correction for multiple comparisons (ɑ = .004). See Table 3 for all of the 
correlations between ΔnSCR/preferences and high-/low-level visual 
features. In Appendix C, we report additional correlations between 
ΔnSCR and the component scores for VIWT and OAISPP. Notably, none 
of the correlations between preferences and visual features were sig-
nificant. Together, these results suggest that ΔnSCR was related to high- 
level visual features of the landscapes, although preferences (and not 
ΔnSCR) varied across landscapes. 

4. Discussion 

In the present study, we used behavioral and physiological measures 
to investigate the perception of renewable energy infrastructure in 
various landscape types. Towards this end, participants were shown 
pairs of videos based on LiDAR data from real locations in different 
landscapes of Switzerland and asked to choose their preferred video 
while we recorded their skin conductance. We can accept our main 
hypothesis that RES visual impact affects physiological arousal because 
participants’ skin conductance was higher for stimuli with more RES. 
This trend was consistent for six of the seven landscapes. Our sub- 

hypothesis that these relationships could be explained by low- and 
high-level visual features was partially supported because physiological 
arousal was correlated with only 1 of 2 high-level visual features (i.e., 
the visual impact of photovoltaic systems; OAISPP). We can also accept 
our second hypothesis that RES visual impact affects landscape prefer-
ences because participants tended to choose stimuli with a low amount 
of RES (compared to high amounts), especially for alpine regions. 
Together, these results suggest that the combination of physiological 
and behavioral measures can be used to assess the impact of RES on 
landscapes and that landscape assessment needs to consider differences 
between individuals’ responses to RES across different landscapes. 

Most of our analyses use linear mixed models in order to investigate 
the effects of RES impact and landscape on physiological arousal and 
landscape preferences. These models allow us to find associations be-
tween aspects of the stimuli that we systematically varied (e.g., the 
amount of RES in a video) and participants’ responses that we measured 
(e.g., physiological arousal). One of the main advantages of linear mixed 
models is that we can account for variations in the data that can be 
attributed to less relevant aspects of the stimuli (i.e., random factors). 
For example, the order of landscape pairs among trials was considered a 
random factor because its effects were not relevant for our particular 
research questions, although they might be relevant for other studies. 

The effect of the amount of RES (SCENARIO) on changes in physi-
ological arousal (i.e., ΔnSCR) suggests that participants were more 
physiologically aroused when viewing landscapes with more RES. In 
addition, the correlation between the visual impact of photovoltaic 
systems (OAISPP) and changes in physiological arousal ΔnSCR indicate 
that this effect may be primarily attributable to the presence of more 
photovoltaic systems in the landscape. This finding extends previous 
research that has employed questionnaires (e.g., the SAM) in order to 
investigate the impact of varieties of photovoltaic systems on buildings 
[30]. While Sanchez-Pantoja and colleagues [30] demonstrated a dif-
ference in self-reported arousal between photovoltaic systems that are 
either completely integrated into the building envelope or mounted 
using metallic supports on the roof of the building, we found a difference 
between different amounts of photovoltaic systems (in general) on 
physiological arousal. Future studies should assess in what circum-
stances physiological or questionnaire methods are more appropriate for 
landscape assessment. 

Previous research has also found that wind turbines were more 
physiologically arousing compared to churches (but not other industrial 
constructions) in landscapes [36]. Moreover, Johansson and Laike [12] 
found that a composite measure of emotional states predicted the 
intention to accept wind turbines. Consistent with this research, we 
found a positive correlation between visual impact of wind turbines 
(VIWT) and physiological arousal, possibly indicating that landscapes 
with more wind turbines were related to higher physiological arousal. 
This possible correlation must be interpreted with caution because it did 
not survive a correction for multiple comparisons. Nonetheless, our 
study can motivate future evaluations of more fine-grained measures of 
visual impact such as the distance of wind turbines from the observer. 

Notably, the relationship between RES scenario and physiological 
arousal was consistent across six of the seven landscape types we tested. 
For the urban plateau landscape (PLAT_URB), the numerical difference 
between high and low scenarios was in the opposite direction (i.e., 
higher for the low RES scenario) of all of the other landscapes tested. 
This trend may be attributable to the number of objects in the fore-
ground of the PLAT_URB stimulus. In urbanized scenes, buildings and 
other urban infrastructure may divert attention from the renewable 
energy infrastructure in the landscape. It is possible that participants in 
the present study focused their attention on these foreground elements. 
According to psycho evolutionary theory [85], one would expect no 
difference between our low and high scenarios for PLAT_URB if partic-
ipants primarily attended to unaltered infrastructure in the foreground. 
However, we obtained slightly higher physiological arousal for the low 
RES scenario of this particular landscape than the high RES scenario. 

Table 2 
Participants’ (N = 99) SAM ratings on a 9-point Likert scale (1:9).  

SAM dimension Median Mean SD 5th percentile 95th percentile 

Arousal 5 5.39 1.42 3 8 
Valence 7 7.19 1.04 6 9 
Dominance 7 7.18 1.29 5 9  
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Because this pattern cannot be explained by any of the other high- or 
low-level visual features we tested, future research can employ 
eye-tracking studies in order to address these issues directly. With 
additional landscape stimuli, these studies may also have sufficient 
statistical power to explain these differences in terms of visual features. 

There was a correlation between the low-level visual feature of 
subband entropy (SUB_ENTR) and physiological arousal, suggesting that 
higher SUB_ENTR was related to lower physiological arousal. This cor-
relation must also be interpreted with caution because it did not survive 
a correction for multiple comparisons but is consistent with previous 
research. According to information theory [86], entropy is inversely 

related to redundancy. In a visual image, entropy represents difficulty in 
predicting particular features given their surrounds. For example, 
Stamps [2002] found a linear relationship between an entropy-based 
measure and self-reported pleasure in a landscape context. In the pre-
sent study, we employed SUB_ENTR specifically as a measure of visual 
entropy at a particular spatial frequency. According to Rosenholtz et al. 
[64], lower values of the measure SUB_ENTR can be understood as more 
redundant information in the images [64]. For the stimuli used in the 
present study, images from the high RES scenario (mean = 4.079) had 
slightly lower mean SUB_ENTR than images from the low RES scenario 
(mean = 4.126), and this difference was consistent across six of the 

Fig. 4. Mean ΔnSCR (M) for each combination of LANDSCAPE AND SCENARIO. Each error bar represents the standard error of the mean (SE). N represents the number of 
trials in which each stimulus was presented. 

Fig. 5. The proportion of preferences for each combination of LANDSCAPE AND SCENARIO. Here, N represents the number of trials in which the stimulus 
was presented. 
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seven landscapes. Therefore, lower entropy may be the result of more 
repetitive spatial (e.g., line orientation) and color information in the 
images. This trend would indicate that renewable energy infrastructure 
influences the aspect of redundancy in the landscapes and that this 
redundancy affects people’s physiological reactions. 

Regarding the preference data, participants tended to prefer the low 
RES scenarios compared to the high RES scenarios, especially for the 
alpine landscapes (i.e., ALP_URB, ALP_TOUR, and ALP). Notably, only 
the plateau landscapes (i.e., PLAT_URB and PLAT_AGRI) led to slightly 
more preference for the high RES scenario than the low RES scenario. 
These results have important implications for the addition of RES in 
Swiss landscapes and to support the transition towards renewable en-
ergy production worldwide. Specifically, citizens may be especially 
opposed to RES interventions in alpine regions. These results may 
appear to conflict with Michel and colleagues [57] who found that 
photovoltaic systems were well-accepted for high alpine regions, 
particularly when mounted on existing infrastructures such as avalanche 
barriers. However, this disparity may have resulted from our compari-
son of a high versus a low amount of RES with a natural landscape as the 
background instead of other risk protection or energy infrastructure (e. 
g., dam of a hydropower plant) with and without photovoltaic systems. 
There are two possible explanations for the landscape preferences we 
observed in the present study. First, alpine regions may differ from the 
other regions in terms of high- (e.g., VIWT) or low-level (e.g., spatial 
frequency) visual features. Second, there may be a particular cultural 
attachment to alpine regions. Future studies will need to further disen-
tangle these possible explanations with targeted questionnaires. Since 
still a major portion of the global energy production comes from con-
ventional or nuclear energy systems, we motivate other studies to spe-
cifically compare people’s physiological reactions between renewable, 
conventional, and nuclear energy systems. This leads to a better inte-
gration and comparability of our results with other energy in-
frastructures which people are more familiarized compared to RES. 

One potential limitation of our study was that the sample was 
restricted to young academics who had a political attitude that tends to 
be environmentally protective. We purposefully excluded older people 
because of decreases in the strength of their physiological signals found 
by previous research [87]. However, future studies can systematically 
assess the effects of affiliations with political and environmental groups 
on EDA in the context of RES visual impacts. In addition, generating our 
visual stimuli was time consuming compared to image manipulation 
based on photographs. However, with this visualization approach, we 

ensured that the videos were comparable among different types of 
landscapes. This was necessary to properly measure and analyze the 
physiological signal with respect to different landscape types and 
different levels of RES visual impacts. 

5. Conclusion 

The present study demonstrated that people’s physiological arousal 
and preferences can be influenced by the visual impact of RES in-
terventions and differences between distinct landscapes in Switzerland. 
For policy makers, these results may inform decisions related to the 
amount and placement of RES in Switzerland. However, future research 
is needed to elucidate the specific mechanisms underlying the rela-
tionship between emotional states and landscape preferences. For 
example, researchers can ask participants to rate landscape stimuli 
individually instead of pairwise comparisons. This approach also has the 
advantage of easily determining the original scale [88] but often results 
in higher variance, less accurate results, and more time-consuming data 
collection [89]. While neither preference nor arousal data necessarily 
indicate acceptance by the general population, the present study rep-
resents one step towards understanding landscape perception and public 
opinion regarding RES interventions. Future studies may extend this 
approach to include other dimensions of emotion (e.g., valence) and 
other landscapes outside of Switzerland. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
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Table 3 
Correlation coefficients (r) and significance levels (p)) for the correlations be-
tween ΔnSCR/preferences and the high-/low-level visual features of the stimuli. 
Asterisks denote the correlation that survived a Bonferroni correction (alpha =
.004) for multiple comparisons. For each correlation we report N = 14 
measurements.   

Dependent variables 

ΔnSCR Preferences 

Independent variables r p r p 

High-level visual features (calculated RES visual impact) 
Visual impact of wind turbines (VIWT) .595 .024 -.390 .168 
Objective Aesthetic impact assessment of solar 

power plants (OAISPP) 
.714 .004 

* 
-.275 .341 

Low-level visual features 
FC -.231 .427 -.503 .067 
SUB_ENTR -.545 .044 -.202 .489 
JPEG -.232 .425 .055 .852 
EC -.175 .550 -.367 .197 
FRACT -.008 .978 .426 .129 
SF_LOW .126 .580 -.263 .364 
SF_HIGH -.253 .383 .514 .060 
HUE .445 .111 .072 .807 
SAT .037 .900 .479 .083 
HUE_SD -.237 .415 -.367 .197  
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