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Abstract—Long Range Wide Area Network (LoRaWAN) has
been advanced as an alternative for creating indoor sensor
networks that extends beyond its original long-distance com-
munication purpose. For the present paper, we developed a
Dense Indoor Sensor Network (DISN) with 390 sensor nodes
and three gateways and empirically evaluated its performance for
half a year. Our analysis of more than 14 million transmissions
revealed that DISNs achieve a much lower distance coverage
compared to previous research. In addition, the deployment of
multiple gateways decreased the loss of transmissions due to
environmental and network factors such as concurrently received
messages. Given the complexity of our system, we received few
colliding concurrent messages, which demonstrates a gap between
the projected requirements of LoRaWAN systems and the actual
requirements of real-world applications. Our attenuation model
indicates that robust coverage in an indoor environment can be
maintained by placing a gateway every 30 m and every 5 floors.
We discuss the application of DISNs for the passive sensing and
visualization of human presence using a Digital Twin (DT).

I. INTRODUCTION

A Dense Indoor Sensor Network (DISN) based on Low
Power Wide Area Networks (LPWAN) provides opportunities
to estimate human presence in the wild. Originally, LPWANs
were developed to cover large outdoor distances with a robust
signal at low cost [1]–[6]. In a LPWAN setup, devices are not
easily accessible and must operate with limited maintenance,
without external energy supply, and with limited capacity for
data transmission. Notably, the features of LPWAN that enable
robust long-distance outdoor communication are also attractive
indoors because of the low additional overhead for existing
infrastructure and easier management of densely crowded
bandwidth. One drawback of LPWAN implementations is a
low Data Rate (DR) that may be further diminished in order
to increase signal quality.

The most common LPWAN standard is Long Range Wide
Area Network (LoRaWAN) [7]. LoRaWAN is gaining at-
tention [8] in both research and industry for three reasons.
First, LoRaWAN is an open standard, and the only proprietary
component from Semtech is a low-cost LoRa transceiver
(LoRa PHY) [7]. Lora PHY encodes information with a

chirp spread spectrum [9] and an integrated forward error
correction (FEC) [10] as specified under IEEE802.15.4a [11].
Second, LoRaWAN uses the unlicensed industrial, scientific,
and medical (ISM) frequency bands in contrast to expensive
cellular networks. The unlicensed spectrum is free to use
but regulated, and in Europe, the spectrum has a duty cycle
limitation of 1% [12]. Third, LoRaWAN is reliable and easy to
use due to its design. A battery life of 10 years is possible with
LoRaWAN class A sensor nodes because of an asymmetrical
uplink communication from sensor to server with an ALOHA-
like [13] time window for uplink communication followed by
a dedicated downlink time window [7].

In typical applications, LoRa PHY can send data over
distances of 10–40 km in rural areas, 1–5 km in urban
areas [15], and less than 200 m in dense urban areas [24].
The spreading factor (SF) determines the reliability of the
transmission and the time to broadcast the chirp signal [7]. The
SF varies from 7 to 12 with higher values representing a more
robust signal and reduced bandwidth [10]. At the best possible
DR, only low bandwidth (0.3-50kb/s) applications [10] are
feasible. Theoretically, millions of devices can be supported
within a single LoRaWAN network because of the star-of-
star topology [15]. However, there is a trade-off between the
number of devices and the number of transmissions which is
imposed by the duty cycle limitation and interference from
colliding concurrent messages [21].

By allowing for DISNs, LoRaWAN may be suitable for
studying human presence at a high spatiotemporal resolution
[25]. Indoor human presence can be measured actively or
passively [26]. Whereas active tracking requires participants
to wear sensors [27], passive tracking infers human presence
from changes in environmental factors measured by stationary
sensors [28]. Usually, a single sensor per room is used to
measure human presence as an indication of occupancy [28].
Inferring human presence can be facilitated with a Digital
Twin (DT) [29], [30] underpinned by LoRaWAN as a Service-
oriented Architecture (SoA) [31] middleware. A DT is a
platform for digitally mirroring processes from the physical
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TABLE I
LORAWAN INDOOR STUDIES

[14] [15] [16] [17] [18] [19] [20] [21] [22] [23]

Region Europe Europe Europe Europe Europe Asia Europe Europe Asia Europe
#Floors 1 19 9 8 1 5 4 6 - 1

Distances 103 m - ca. 20 m ca. 100 m 190 m - 60 m 420 m 150 m -
Data rate (SF)† all auto all 12 7/12 all all all 11 9/10/12

Gateways 1 1 1 1 1 1 1 1 1 1
Devices 4 32 1 1 2 5 1 1 1 1

Locations 4 32 13 -* 46 5 13 23 4 4
Transmissions 50 - 1200 - 50 - 80 hours 600 60 -

† All DRs used BW125;* Only a heat map was shown.

world [32]–[34] that is suitable for continuously evaluating
human presence indoors [35]. In general, empirical testbeds
for LoRaWAN with a large number of sensors are scarce
[36], although recently, an outdoor scenario with 50 nodes was
tested [37]. Nonetheless, many questions on the scalability of
LoRaWAN remain open, especially for DISNs, including the
number of sensor nodes that are feasible indoors, the attenua-
tion of the signal by the environment (e.g., walls, floors), and
the feasibility of LoRaWAN as part of a continuously running
system.

The present paper is the first to demonstrate the technical
feasibility of a LoRaWAN DISN with 390 nodes and 3 gate-
ways in an office building. Our DISN is capable of maintaining
a strong signal on all DR at distances up to 30 m and 5
floors for a single gateway. At the lowest DR, theoretical
distances up to 150 m are possible, but each additional floor
halves this distance, limiting sensible setups to 5 floors. With
390 sensors on 8 floors and up to 64 m of distance from
sensor to gateway, the system received an average of 55000
transmissions daily. The percent of concurrent messages (i.e.,
on different channels and spreading factors) was 5.5%, but the
percent of colliding concurrent messages (i.e., on the same
channel and spreading factor) was negligible at 0.29%. The 3
gateways allowed us to reduce the Frame Error Rate (FER) by
37.5% compared to the best performing gateway. We report
much lower maximal distances and show that previous work
on indoor LoRaWAN networks was optimistic, but multiple
gateways may compensate for this shortcoming.

II. RELATED WORK

Despite the original application of LoRaWAN outdoors,
researchers have investigated LoRaWAN indoors (see Table I)
using a minimal viable design (e.g., one gateway, one device,
and one network server) and therefore could not measure per-
formance with multiple sensors [16], [17], [20]–[22]. In these
studies, the device was moved to multiple locations within
the building, mostly on the same floor [16], [20], [21]. In
addition, many of these models were based on simulations and
were never implemented with multiple sensors [18]. Despite
these limitations, research suggests that higher DRs can work
indoors without sacrificing connectivity coverage [20].

Typically, signal quality is measured either as the Signal to
Noise Ratio (SNR) or the Received Signal Strength Indicator

(RSSI). SNR indicates whether a message can be received
at all. In other transmission technologies, the noise floor is
usually at 0 db beyond which demodulation cannot occur.
However, LoRa allows for a lower noise floor at which
messages are lost between -7.5 db and -20 db because of chirp
signal modulation [10]. RSSI can indicate the level at which
the signal weakens, which strongly depends on the transceiver.
A general convention is that signals at -60 dbm are considered
strong and below -100 dbm are considered weak [38].

Previous studies have found that a single gateway has
reasonable coverage indoors and that the signal can remain
stable for buildings up to 4 floors [16], [20]. In addition,
they found no discernible effect of placing the sensor nodes
on different floors with the exception of the basement where
the signal deteriorated quickly. Indeed, in reinforced concrete
buildings the signal attenuates quickly covering 8 floors and
approximately 100 m [17], [23]. Together, these studies sug-
gest that a higher SF is critical for traversing denser materials.

In other scenarios, gateways installed above low-rise build-
ings without reinforced materials, which allowed for trans-
missions up to 420 m [21]. In contrast, gateways installed
in an open floor could receive transmissions up to 190 m
[18]. Only a few studies have investigated distances longer
than 100 m, and it is unknown whether interference within
buildings reaches a threshold by which an additional gateway
must be placed. To our knowledge, no study has determined
the distance limits of indoor transmissions or offered a limit
on the number of floors that a single gateway can cover.

III. SYSTEM DESIGN & IMPLEMENTATION

Our LoRaWAN DISN forms the basis for a DT to represent
physically-based higher order processes [32] necessary to
investigate human presence. We map the DT to a classicist
three-layer Internet of Things (IoT) architecture [39] (see
Fig.1), including (1) data collection, (2) transmission, and (3)
utilization (see Fig. 2).

A. Data collection

The data collection layer collects environmental character-
istics containing passively observable data on human presence
in a public building. We tested our LoRaWAN-based DT on
an 8 floor office building at ETH Zürich (ETHZ). The public
part of the building consists of 5 floors with a small lecture
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IoT	Architecture

Digital

Physical

Utilization

User	(implicit)

Data	collection

Thing	(implicit)

2-Layer
Digital	Twin

3-Layer
Classicist	IoT

Transmission

Fig. 1. Abstract system architecture. The digital twin [32] (left) maps to
the implementation model [39] (right). Implicit layers (Things that sense and
Users that operate) are also shown in dashed boxes.

hall on the 1st floor (see Fig. 3). We placed 390 sensors in
19 distinct rooms of varying sizes that may exhibit different
levels of human presence (see Fig. 4).

Each of the five types of battery-powered sensor nodes
uses LoRa PHY for communication and was selected to cover
typical indicators of human presence, including temperature,
CO2-levels [42], noise [43], humidity, and motion [44] (see
Table II). We focused on sensors that covered CO2 (40
nodes) and Volatile Organic Compounds (VOC; 40 nodes)
as lingering effects of human presence. We also employed
noise sensors (40 nodes) and motion sensors (250 nodes)
that immediately indicate presence but are susceptible to false
positives. In addition, we collected environmental factors (e.g.,
temperature, humidity, brightness) that can be driven both by
human presence and other factors such as weather, heating,
time of day, and whether outside windows and doors are open.

TABLE II
SELECTED SENSORS FOR THE PROTOTYPE AT THE UNIVERSITY.

ERS ERS Orbiwise Browan Browan
CO2 Sampol Tabs IAQ Tabs

CO2 X X
VOC X

PIR Motion X X X
Brightness X X X X

Noise X
Humidity X X X X X

Temperature X X X X X

Focus Motion CO2 Sound VOC Motion
Sample rate 10 min 10 min 5 min 5 min Event
Bandwidth 125 kHz 125 kHz 125 kHz 125 kHz 125 kHz

Count 60 40 40 40 210

The placement of sensors needs to conform to several re-
quirements and was stored for analysis. First, sensors can only
collect data in public spaces including staircases, hallways, and
auditoriums. The privacy of building users was maintained
as sensors were not placed in offices, bathrooms, or other

private areas. Second, sensors should be well-distributed to
support data fusion. Sensors of the same type were densely
and uniformly placed throughout each room. Third, sensors
must be placed within the limitations of the existing building.
The sensors are mounted on the ceiling beyond the reach
and attention of building users while accounting for the other
hardware, including cable trays and WiFi-routers.

B. Transmission

The sensor data is made available with a SoA design by
which each processing step is performed independently to
increase interoperability. The data from the sensors are sent
to the network server, stored persistently on a database server,
and made accessible for further analysis in the DT (see Fig.
2). All sensors are configured as Class A LoRaWAN devices
[7] that collect data every 5 to 10 minutes or event-based (see
Table II). The sensors transmit their payload to the gateways
on a channel with a bandwidth of 125 kHz secured with AES-
128 [7]. Re-transmission was disabled to prolong the battery
life at the cost of missing some transmissions due to collisions.

Our LoRaWAN network has two gateways placed on the
ground floor of the public part of the building and one gateway
placed several floors below on the ground floor of the adjacent
non-public part of the building (shown in green in Fig. 4).
We use orbiLINK v4 indoor LoRaWAN nano-gateways (max.
27 dBm; class A & C devices; 8 LoRa channels) [45]. The
gateway converts the IEEE 64-bit extended unique identifier
(EUI) [7] to a IPv4 address and forwards it to a proprietary
LoRaWAN network server.

The network server sets the Adaptive Data Rate (ADR),
enforces the Link Adaptation Policy (LAP), forwards the
payload, and synchronizes the gateway clocks (delay <20 ms).
Our network server performs a two-step optimization based on
ADR and LAP to optimize the available bandwidth, comply
with duty cycles, save battery life, and reduce Time-on-Air
(ToA). For the ADR step, the SF is adjusted whenever the
average of the last 15 transmissions crosses the SF threshold
with a 12 db margin, see Table III. Switching the SF resets
transmission power to the maximal output to ensure that a link
can be established. For the LAP step, the transmission power
is reduced such that transfers occur barely above the noise
level. In practice, LAP is only applied on SF7 because there is
usually no power budget available for higher SF. The payload
is decrypted with an application key [7], combined with meta-
data from each gateway (e.g., SNR and RSSI), and converted
into JavaScript Object Notation (JSON). The network server
provides a webhook (HTTP push API) secured with basic
access authentication (HTTP Auth) and immediately pushes
the JSONs to our persistent storage facility.

The persistent storage facility Experiments in Virtual En-
vironments Representational State Transfer (EVEREST) that
extends the larger open-source platform EVE [40] and forms
a core feature of the DT. EVEREST is a flask-based python
server that implements Representational State Transfer Hyper-
text Application Language (REST-HAL) [46]. The webhook
consumes all messages from the network server and inserts
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Fig. 2. Implemented system architecture. LoRaWAN sensors in the building configured in LoRa mode A (left). Gateways forward data to a network server
which pushes them to the database EVEREST (center). In the DT, data is loaded from the SoA middleware EVEREST to view metrics and visualizations.
Planned features (shown in gray) include statistical analysis, user studies based on EVE [40], predictions, and agent-based simulations [41] (right).
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SideStaircase

Fig. 3. A schematic layout of the public part of the building with stairs as
red arrows.

the data into a local PostgreSQL database extended with
TimescaleDB for time-series and Postgis for spatial data.
Finally, the EVEREST server is hosted on a virtual machine
with 4 virtual processors and 32 GB RAM at ETHZ.

Fig. 4. The 390 sensors shown in DAVE with white rectangles for the involved
rooms. The gateways are green (one is in the non-public area of the building,
3 floors down in the bottom right corner). Different types of sensors are
represented as spheres of different colors (noise: blue; CO2: red; VOC: cyan;
PIR: yellow and magenta).

TABLE III
THE SNR THRESHOLDS FOR THE ADR ALGORITHM.

SF Decrease Threshold Increase Threshold

SF7 * -7.5
SF8 -5 -10
SF9 -7.5 -12.5

SF10 -10 -15
SF11 -12.5 -17.5
SF12 -15 *
*Cannot increase or decrease further. Margins are not included.

C. Utilization

The utilization layer consists of a prototype of the visual
DT, which is also integrated into the EVE platform [40]. The
DT can be explored using an add-on called Data Analytics in
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Virtual Environments (DAVE; see Fig. 4). Because readings
from any single sensor would be difficult to interpret, a
building information model (BIM) in DAVE provides spatial
context for the densely placed sensors. Our DT also includes
features for visualization and analysis (see Fig. 5). The data
is stored on EVEREST in near-real time and immediately
displayed in the DT. The difference to real time display is
due to a tradeoff between power usage and transmission delay
in the transmission settings of LoRaWAN because of limited
battery life of the sensors.

SoA
middleware

DAVE Visualisations in Digital Twin

BIM Model

EVEREST
database

Sensor
representation

HTTPS
encrypted

Time series

Semantic spaces

Aggregated time
series data

Define aggregations

Fig. 5. The processing pipeline of sensor data in our DT implemented in the
EVE platform. Sensor data is delivered by the SoA middleware EVEREST.

IV. RESULTS

Between March and July 2020, our setup collected 14
million transmissions over a range of up to 64 m and 8
Floors. ADR allowed us to analyze the preferred channel in
our setup. The majority of messages were sent on SF7 (92.6%;
see Fig. 6). Given the short maximal distance, we expected all
gateways to receive a similar amount of transmissions. The two
gateways located in the public part of the building received a
similar amount of messages (see Fig. 7). The gateway located
in the non-public part of the building only received between
one and two magnitudes fewer transmissions depending on the
originating floor. In addition, as the number of floors increases,
ADR increases the SF to compensate for the loss of messages.
We calculated the FER from the sequence number of the
received JSON such that any jump in the sequence indicates
a lost frame.

Overall, the two public gateways reported an FER of
25.51% and 17.46%, while the remote gateway reported an
FER of 80.55% (see Fig. 8). The average FER reported at the
network server across all sensor nodes was 8.06% which is
considerably lower than any individual gateway’s FER because
some frames only arrive at one gateway and appear lost for
the other gateways but can be restored from the network
perspective (see Fig. 8). Note that our FER includes frames
lost due to gateways being disconnected from the network.
No sensor reported a duty cycle usage higher than 0.004%.
No more than 5 colliding concurrent messages occurred on
the same SF and channel with more than 99.7% of messages
reporting no collision (see Fig. 9).

We analyzed the signal quality of LoRaWAN transmissions
in terms of SNR and RSSI. First, we observed the SNR and
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Fig. 6. The spreading factor (SF) and bandwidth (BW) of all received
transmissions at each gateway (GW) on a log-scale.
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Fig. 7. Received transmissions per GW, floor, and SF on a log-scale. Each
transmission can arrive at all GWs. Higher SF are more often used in higher
floors.

RSSI grouped by DR and the number of floors between the
sensor nodes and the gateway. Next, we plotted these grouped
measures as functions of the distance between sensor node and
gateway (see Fig. 10). We observed a clear decay of the signal
with increasing distance and number of floors across all DR,
indicating attenuation that occurs beyond physical path loss
models for open space [47]. However, the effect of floors on
signal quality decreases with distance. Because most data were
sent on SF7, SF7 produced the most stable curve. Higher SF
seemed to offer some signal stability for very short distances
but quickly deteriorated and approached the noise floor of
LoRa at 30 m. Note that higher SF started with a higher SNR
and RSSI for short distances because ADR resets the power
output. While higher SFs increase ToA and allow the signal to
be integrated, leading to higher SNR and RSSI [14], they are
also more prone to signal shadowing and multi-path fading
indoors [14]. This may explain why signal strength in our
study quickly reached the noise floor.

We modeled attenuation as linear signal decay to understand
the relations among distance, building structure, indoor obsta-
cles, and network. Because each of the 390 sensors regularly
sent transmissions, signal strength was not independent. We
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TABLE IV
MIXED MODELS TO DETERMINE SNR AND RSSI FOR EACH DATA RATE

SF7 SF8 SF9 SF10 SF11 SF12

SNR RSSI SNR RSSI SNR RSSI SNR RSSI SNR RSSI SNR RSSI

Average signal strength
at node (constant)

10.03∗ −63.75∗ 10.35∗ −94.75∗ 10.00∗ −97.33∗ 8.07∗ −87.07∗ 10.45∗ −85.05∗ 8.38∗ −60.35∗

(0.09) (0.46) (0.23) (0.61) (0.29) (0.64) (0.35) (0.91) (0.36) (0.90) (0.43) (0.77)

Attenuation in m −0.27∗ −1.61∗ −0.43∗ −0.49∗ −0.44∗ −0.45∗ −0.32∗ −0.55∗ −0.34∗ −0.61∗ −0.20∗ −1.09∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

One floor
between

−0.26∗ −9.48∗ 0.04 −1.92∗ −0.92∗ −2.89∗ −0.96∗ −5.29∗ −2.50∗ −7.10∗ −2.68∗ −14.86∗

(0.00) (0.01) (0.03) (0.03) (0.04) (0.03) (0.05) (0.04) (0.07) (0.06) (0.08) (0.08)

Floor-attenuation
interaction

−0.01∗ 0.29∗ 0.02∗ 0.07∗ 0.04∗ 0.08∗ 0.02∗ 0.12∗ 0.04∗ 0.15∗ 0.02∗ 0.29∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Colliding
message

0.13∗ 1.57∗ 0.17 0.67 0.24 0.66 0.77 0.36 1.37∗ 0.27 0.63 0.27
(0.01) (0.05) (0.28) (0.28) (0.44) (0.34) (0.43) (0.36) (0.29) (0.25) (0.21) (0.21)

Observations 12,948,936 12,948,936 495,967 495,967 246,184 246,184 160,618 160,618 104,499 104,499 106,025 106,025
∗p<0.001

VOC
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Fig. 8. FER by gateways and devices. Transmissions are aggregated by device
type (right), gateways (middle) and the network server (left). Transmissions
are represented by different colors (purple: arrived; green: lost; yellow:
restored). Restored messages arrived at least at one gateway and could be
restored for other gateways substantially reducing lost transmissions. Each
transmission is counted thrice to account for it passing at each gateway. The
overall proportion of arrived, lost, and restored messages remains unchanged.

used a mixed model [48] to quantify the impact of the
structural setup on SNR and RSSI. This allowed us to account
for the dependence among multiple transmissions from each
sensor by modeling transmissions nested within sensor nodes.
To better understand the impact of DRs on SNR and RSSI,
we created independent models for each SF. Our models
have fixed effects for environmental criteria (i.e., distance
and number of floors) and network criteria (i.e., colliding
concurrent messages) and random intercepts for each sensor
(see Eq. 1). We computed SNR and RSSI as the output y
for a regression on fixed effects at every transmission j and
sensor i. The coefficients b group the q transmissions that
each sensor i sent and represent the random intercept. For the
concurrent message variable, we counted the number of
other transmissions that were “on air” during a transmission.
We subtracted the ToA from the gateway timestamp to define
the interval in which arriving messages overlapped at different

D
estructive

M
ulti-C

hannel

SF7 SF8 SF9 SF10 SF11 SF12

100

102

104

106

100

102

104

106

M
es

sa
ge

s 
(lo

g-
sc

al
e)

Concurrent Messages 0 10 20

Fig. 9. Summary of concurrent transmissions being received in the same
time window. Destructive concurrent transmissions are received on the same
SF and channel at different GWs (top) whereas multi-channel transmissions
are received on all SF and channels at all GWs (bottom). Many transmissions
occur in the same time window but only a fraction of them are destructive
such that they would not have been received at all if there was only one
gateway.

gateways on the same SF and channel. In addition, this interval
was expanded by 25% on each side to produce a time window
that accounts for the gateway synchronization delay. Because
complex physical simulations would be necessary to account
for signal shadowing and multi-path fading, the distance
variable (meters from gateway to sensor nodes) accounts for
physical “path loss” as a black-box linear factor that covers
different covarying environmental aspects. This approach sub-
stantially differs from classical LoRaWAN models based only
on free space path loss [47].

yij =β0 + β1distanceij + β2floorij+
β3distanceij ∗ floorij + β4concurrentij+
bi1z1ij + ...+ biqzqij + εij

(1)

Our models (see Table IV) confirmed the expectations
derived from the descriptive data. The models’ constants
indicated average signal strengths at the sensor node of around
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Fig. 10. The SNR and RSSI as a function of distance given the DR.
The red horizontal line indicates the noise floor threshold of LoRaWAN.
For SNR, the threshold depends on the DR [10], and for RSSI, the -121
dbm threshold depends on the gateway. The curves are aggregated SNR and
RSSI measures based on locally estimated scatterplot smoothing (LOESS)
regression. The points represent a random sample of real measurements to
display the underlying distribution.

9±1 db for SNR and -79±19 dbm for RSSI. Here, we discuss
SF7 in detail because it represented most messages. Due to
attenuation, our SNR model predicted a signal loss of -0.270
db per meter. In addition, our RSSI model predicted a signal
loss of -1.609 dbm per meter. Given that the height of each
floor in the building was 3.36 m, we estimated that each
floor affected the signal strength by -1.183 db (SNR) and -
13.908 dbm (RSSI). These interactions between attenuation
distance and the number of floors were significant for SNR
and RSSI. While these interactions for the SNR model were
small and negative, they were substantial and positive for the
RSSI model, indicating that the signal was becoming weaker
at a slower rate as the number of floors increased. Concurrent
transmission occurred so seldom that the improvement in the
signal of 0.128 db (SNR) and 1.573 dbm (RSSI) appeared to
be an artifact.

To compare all SF, it is necessary to interpret the models’
coefficients in terms of limits for transmission (see Table V).
Here, we indicate the maximal distances that our system would
support according to our model. Under ADR, sensor nodes on
SF7 communicate with less transmission power than would be
possible otherwise (to conserve battery), which may explain
why SF7 underperforms in terms of RSSI compared to higher
SF. The negative impact of additional floors on signal quality
causes LAP to transmit at maximal power and thus allows
for longer distances to be covered on the first floor. Distances
between 36.81 m and 141.84 m can be observed within a

single floor for all SF but quickly lose signal strength for
each extra floor by nearly halving the reachable distance per
additional floor. Depending on the SF, the maximal number
of reachable floors varies from 4 to 15. However, we observe
that after 5 floors the area covered in a floor by the signal
is substantially reduced under any SF. Fig. 11 compares our
model output with the received signal data at each gateway.
We find that our model accurately identifies strong signal
strength but underestimates how long a viable but weak signal
can be received. The remote third gateway remained outside
of our model’s boundary with its reception of transmissions
and exhibited generally lower SNR and RSSI. In general,
we observed that increasing the DR (SF8-SF12) allowed for
longer ranges similar to outdoor applications, but the signal
quickly diminished across distance and with every additional
floor. An exception was SF7 which overperformed in SNR but
underperformed in RSSI possibly due to ADR.
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Fig. 11. Received data quality by floor (3.36 m per floor), distance, and
gateway. Different colors for each graph represent different gateways (purple:
1; jade: 2; yellow: 3). The black curves show the boundary where the models
predict that transmissions occur below the noise floor. Each point represents a
sensor-gateway connection, the opacity represents the average signal quality,
and the size depends on the number of transmissions received at a gateway
compared to the number of transmissions received by the other gateways.

V. DISCUSSION

While the use of indoor LoRaWAN has been previously
advocated, research has failed to deliver large scale applica-
tions, leaving a gap between the expectation and its realization.
To our knowledge, this is the first project to deploy a LoRa-
WAN DISN and demonstrate its feasibility beyond theoretical
models and ns-3 simulations [49]–[51]. We collected a large
data set with more than 14 million transmissions (from 390
sensors over approximately 5 months) compared to (at most)
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TABLE V
SNR AND RSSI LIMITS FOR TRANSMISSION IN OUR SYSTEM BASED ON MIXED MODELS

SNR RSSI

Max. reachable SF7 SF8 SF9 SF10 SF11 SF12 SF7 SF8 SF9 SF10 SF11 SF12

Distance 0 floors up 64.88 m 47.29 m 50.96 m 72.6 m 83.34 m 141.84 m 36.81 m 63.49 m 71.1 m 82.14 m 79.3 m 69.65 m
Distance 1 floor up 59.5 m 46.39 m 49.73 m 70.87 m 82.73 m 141.59 m 34.36 m 65.4 m 74.49 m 88.78 m 85.46 m 72.69 m
Distance 2 floors up 27.85 m 20.96 m 21.01 m 30.98 m 33 m 57.66 m 10.4 m 26.48 m 28.42 m 31.8 m 28.34 m 21 m
Distance 3 floors up 17.19 m 12.76 m 11.96 m 18.26 m 17.79 m 31.89 m 3.43 m 14.72 m 14.9 m 15.72 m 12.6 m 7.1 m
Distance 4 floors up 11.84 m 8.7 m 7.53 m 11.99 m 10.43 m 19.38 m 0.11 m 9.03 m 8.44 m 8.13 m 5.24 m 0.64 m
Distance 5 floors up 8.61 m 6.29 m 4.89 m 8.27 m 6.07 m 11.99 m -* 5.69 m 4.66 m 3.71 m 0.96 m -*
Floors 14.82 15.25 9.87 11.74 8 8.68 4.26 9.33 7.68 6.68 5.55 4.31

Note: * No meaningful output.

a couple thousand transmissions reported in previous research
[20]. Consequently, we were able to assess the specific real
world factors that affected our LoRaWAN DISN.

Previous research has focused on descriptive data for the
distance limits of specific scenarios that provide some indica-
tion of the limitations of such systems [20], [21]. In some
cases, theoretical models were developed to qualify these
descriptions, but it is difficult to extend these models to other
building structures and obstacles [16], [18], [47]. Distance
to the gateway is a key metric for LoRaWAN networks
performance in both indoor and outdoor applications. Outdoor
applications with minimal interference are typically evaluated
with respect to signal attenuation in different environments
(e.g., rural versus urban) at the scale of kilometers. In contrast,
signal attenuation indoors is at the scale of hundreds of meters
because of building structures (e.g., walls and floors) causing
shadowing and multi-path fading [14].

We investigated the limits of LoRaWAN indoors by ap-
plying a mixed model to represent signal attenuation and
estimated the impact of different building and network char-
acteristics on signal strength. Our model predicted that the
signal could be transmitted between 36.81 m and 141.84
m (depending on SF) within the same floor (see Table IV)
with the caveat that we had no transmissions beyond 64 m.
Notably, this estimate is considerably lower than what has been
previously reported [20], [21], [24]. The maximal distance
further decreased if floor levels are also considered. Here,
our model predicted a maximum coverage of 4 to 15 floors
(depending on SF) directly above the gateway or at most
51.24 m upwards with the caveat that we had no transmissions
beyond 8 floors. It appears that each additional floor upwards
roughly halves the signal strength so that coverage on the
fifth floor is already below 12 m on any SF. Our findings
contrast with previous reports of a negligible effect of floors on
signal strength [20] and extrapolations that a coverage of one
gateway every 10 floors is manageable [15]. When comparing
our model with the network data, we noticed that the remote
gateway is outside of our area of high quality transmission
(yellow in Fig. 11) and also has a FER of 80.55%, indicating
a useful correlation between our model’s predictions and the
ability to receive transmissions.

Furthermore, we may have underestimated the impact of
construction materials on signal strength because many mes-
sages were sent barely above the noise floor of SNR and RSSI
due to the way in which ADR manages SF by selecting only
higher SF on short distances when signal strength is weak.
This could result in a biased sample of higher SF. These results
also need to be interpreted carefully because linear modeling
of the attenuation in a building may not be sufficient. As
construction materials for floors and exterior walls vary from
building to building, they impose constraints on the network.
These constraints are difficult to generalize without computa-
tionally expensive simulations or large studies on the effects
of different complex structures on signal quality. Despite these
caveats, we believe to have found a conservative boundary for
the deployment of DISNs and strongly recommend the use of
multiple gateways placed every 30 m and 5 floors to ensure
that as many transmissions as possible are received.

Another major source of discussion for the usability of Lo-
RaWAN DISN is the loss of transmissions. While LoRaWAN
is more robust than many other communication technologies,
there is a limit on how many messages can be transmitted at
the same time. With our setup (1.5 transmission per second),
we observed only 1 to 5 colliding concurrent messages,
accounting for 0.29% of all transmissions. Overall, we lost
8.06% of transmissions. We found that multiple gateways have
mitigated the loss of transmissions, either due to environmental
factors or network issues such as concurrency. Notably, our use
of the third remote gateway provided two important lessons.
First, our use of this gateway demonstrated how distances
longer than 30 m across multiple floors led to a severe loss in
capacity, as indicated by considerably worse FER (80.55%).
Second, despite the weak contribution to overall transmission,
this gateway still reduced the overall FER per sensor node by
1.31% compared to having only two gateways.

SF is usually an important factor to consider for the quality
of a LoRaWAN network. However, in our setup, the ADR
compels our network to use SF7 for 93% of transmissions
because SF7 provides the highest data throughput at the lowest
battery cost. This finding aligns with theoretical expectations
that, for short distances, lower SF are more effective. Contrary
to expectations, larger SF can actually improve signal quality
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over shorter distances. Interestingly, indoors, the larger SF only
provides up to twice the distance coverage of SF7 which con-
trasts starkly with the performance gain in outdoor scenarios.
For indoor application, we would recommend to develop an
ADR that also switches to a higher SF as long as the required
data throughput can be maintained. If only standard ADR
is available, our distance and floor recommendations (30 m;
5 floors) ensure a high quality signal throughout a building
regardless of the chosen SF.

VI. CASE STUDY – HUMAN PRESENCE DURING THE
COVID19 LOCKDOWN IN SPRING 2020

The core focus of this paper was on the feasibility of the
network infrastructure. However, while testing the network,
we also collected a large data set that continues to increase
by 250,000 data points every day. Between March 8th and
August 4th (2020), our prototype collected 23.2 million data
points (see Fig. 12). Before data collection, 137 sensors
were installed, but due to COVID-19, the installation of the
remaining 253 sensors was delayed until mid-May. Fig. 13
presents select sensor data in 24-hour cycles aggregated by
room over the whole period for the second floor.
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Fig. 12. Measurements per sensor type and day. The total is shown in black.
Lower number of measurements before mid May are due to the Covid19-
related lockdown delaying sensor installation.

While a ground truth data set (i.e., number of people
counted) could not yet be generated to validate human pres-
ence models, we use the COVID-19-related lockdown to
investigate whether variations in the sensor data can indicate
human presence. We summarize the sensor data at the room
level as variance indicators Vr,t (see Eq. 3), which aggregate
data by room r and hour t based on the sensor type i and
the individual sensor device j. Because of the different scales
of these measurements, we use z-scores by sensor type i so
that each measurement vr,i,j,tk is aggregated over all j devices
in a room r and measurements k in time slot t (see Eq. 2).
As some extraordinary events (e.g., construction with noise
up to 14 times louder than average) have resulted in extreme
outliers, we limited measures to within 3 standard deviations
and then aggregated with respect to sensor type i (see Eq. 3).
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Fig. 13. Sensor data on the second floor. The soft lines indicate the values
for each day. The strong line indicates the average over all days. The shaded
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Our variance indicator allows us to observe strong periodic
variation in each room and to tentatively attribute portions of
the variation to human presence. See Fig. 14 for our analysis
of the ground floor. Because of the COVID-19 lockdown at
the beginning of the study, we were able to attribute some of
the later variations to returning human presence by marking
key events that occurred inside the building. On March 13th,
the lockdown was enacted, and until April 22nd, only essential
personnel (e.g., building management and reception) were still
present. From April 22nd to June 8th, a slight easing of the
lockdown was introduced that allowed some researchers to
return with special permits. From June 8th to August 3rd, all
researchers were allowed back in the building. From August
3rd onwards, the building was again opened to the public
with students and visitors allowed to enter without special
permits. The strongest impact on variations in the data was
when presence was strongly reduced during the first lockdown
period. This is most visible in the Side Staircase, Hallways
1 & 3, and to a lesser degree in Hallway 2. Two major
exceptions were the Main Staircase and the Lobby where the
offices of essential personnel are located. After the special
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permits were issued, some presence returned to the building,
producing additional variation. When full access was restored
for researchers, a regular pattern in variation returned.
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Fig. 14. Sensor data aggregated by hour and room for the ground floor. The
variance indicator represents variation up to ± 3 standard deviations. The
magenta lines indicate key events related to the Covid-19 lockdown.

Analyzing human presence indoors can be a difficult but
useful endeavor for researchers, designers, and planners. This
new and rich data set of environmental characteristics from
a real building will allow us to develop novel applications
for analyzing the impact of human presence in an enclosed
public space. While we lacked ground truth measurements to
validate any kind of occupancy model, we benefited from the
natural experiment resulting from the COVID-19-lockdown.
This allowed us to observe patterns of variation in the data
that could only be explained by the sudden absence of human
presence in the building over an extended period of time. Our
immediate next steps will be to compile a ground truth data set
for human presence against which we will be able to run more
complex models that can spatially describe human activity
within a building. Towards this end, we will use automated
visitor counts and localization derived from videos.

While accuracy is expected to be much lower with passive
tracking compared to active tracking, our approach benefits
from the preservation of privacy, measures that are not biased
by sampling, and the observation of more natural user behav-
ior. Passive tracking elegantly circumvents the privacy issue
by estimating changes in environmental measurements and
“naturally aggregating” data from stationary sensors without
reference to the users’ individual identities. Our approach can
also reduce bias in modeling human activity in a building be-

cause we account for the whole population of a building rather
than convenience samples of people who allow active tracking.
Finally, the passive nature of the system also allows us to
observe more natural behavior from building users reducing
the observer effects that can occur with active tracking.

VII. CONCLUSION

Despite the potential for fine-grained data indoors, previous
work has focused on demonstrating the possibility of creating
proof-of-concept systems by relying on few sensor nodes or
simulations without a dense network implementation. We built
the first LoRaWAN DISN that extends LoRaWAN’s appeal
beyond its initial technical scope of long range low power
applications. Indoor environments attenuate the LoRaWAN
signal at a quicker rate compared to outdoor scenarios, and
previous estimates for indoor ranges of 200 m to 600 m
seem optimistic [21], [24]. In contrast, our system achieved
good coverage up to 30 m with an upper bound around
141 m at SF12. Higher SFs improve signal quality but only
marginally increase distance coverage to up to twice that of
SF7 due to signal shadowing and multi-path fading. Similarly,
the impact of floors on signal quality resulted in nearly halving
of reachable distance per additional floor. To our knowledge,
this is the first validation of previous simulation research
using multiple gateways [50]. We demonstrated their positive
impact by recovering up to 37.5% of lost messages in real-
world conditions. Our recommendation focuses on obtaining
the strongest possible signal while minimizing energy costs
at the nodes and data loss. Specifically, we recommend the
placement of one LoRaWAN gateway every 30 m and 5 floors.
A denser gateway placement is critical to the deployment
of LoRaWAN DISNs, more similar to placing WiFi-routers
than outdoor LoRaWAN gateways. While LoRaWAN’s perfor-
mance on average may approximate technologies such as WiFi
under optimal conditions (at 45 m), the energy consumption
of LoRaWAN devices is lower and they not require wires. We
believe that, for pure sensing applications, LoRaWAN offers
many advantages and can help to increase sensing density
in buildings while keeping maintenance costs low. Our next
steps are extending the research on LoRaWAN DISNs and
passively sensing human presence with a DT. We will develop
variations of ADR. We will also expand this prototype into a
fully-fledged DT platform that enables predictions, statistical
modeling, user studies [40], and agent simulations [41].
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